Стабилизатор напряжения на 3.3 вольта smd. Миниатюрные стабилизаторы напряжения

Ниже приведены сразу две схемы 3-х Вольтовых блоков питания .
Они собраны на разных элементах, а конкретную вы сможете выбрать сами, познакомившись с их особенностями и исходя из своих потребностей м возможностей.
На первом рисунке приведена простая схема блока питания на 3 В (ток в нагрузкеке 200 мА) с электронной защитой от перегрузки (Iз = 250 мА). Уровень пульсации выходного напряжения не превышает 8 мВ.

Для нормальной работы стабилизатора напряжение после выпрямителя (на диодах VD1...VD4) может быть от 4,5 до 10 В, но лучше, если оно будет 5...6 В, ≈ меньшая мощность источника теряется на тепловыделение транзистором VT1 при работе стабилизатора. В схеме в качестве источника опорного напряжения используется светодиод HL1 и диоды VD5, VD6. Светодиод является одновременно и индикатором работы блока питания.

Транзистор VT1 крепится на теплорассеивающей пластине. Как рассчитать размер теплоотводящего радиатора можно более подробно посмотреть .
Трансформатор Т1 можно приобрести из унифицированной серии ТН любой, но лучше использовать самые малогабаритные ТИ1-127/220-50 или ТН2-127/220-50. Подойдут также и многие другие типы трансформаторов со вторичной обмоткой на 5...6 В. Конденсаторы С1...СЗ типа К50-35.

Вторая схема использует интегральный стабилизатор DA1, но в отличие от транзисторного стабилизатора, приведенного на первом рисунке, для нормальной работы микросхемы необходимо, чтобы входное напряжение превышало выходное не менее чем на 3,5 В. Это снижает КПД стабилизатора за счет тепловыделения на микросхеме.

При низком выходном напряжении мощность, теряемая в блоке питания, будет превышать отдаваемую в нагрузку. Необходимое выходное напряжение устанавливается подстроечным резистором R2. Микросхема устанавливается на радиатор. Интегральный стабилизатор обеспечивает меньший уровень пульсации выходного напряжения (1 мВ), а также позволяет использовать емкости меньшего номинала.

С разных компьютерных плат, я их иногда применяю для стабилизации нужных напряжений в зарядках от сотовых телефонов. И вот недавно понадобился носимый и компактный БП на 4,2 В 0,5 А для проверки телефонов с подзарядкой аккумуляторов, и сделал так - взял подходящую зарядку, добавил туда платку стабилизатора на базе данной микросхемы, работает отлично.

И вот для общего развития подробная информация о данной серии. APL1117 это линейные стабилизаторы напряжения положительной полярности с низким напряжением насыщения, производятся в корпусах SOT-223 и ID-Pack. Выпускаются на фиксированные напряжения 1,2, 1,5, 1,8, 2,5, 2,85, 3,3, 5,0 вольт и на 1,25 В регулируемый.

Выходной ток микросхем до 1 А, максимальная рассеиваемая мощность 0,8 Вт для микросхем в корпусе SOT-223 и 1,5 Вт выполненных в корпусе D-Pack. Имеется система защиты по температуре и рассеиваемой мощности. В качестве радиатора может использоваться полоска медной фольги печатной платы, небольшая пластинка. Микросхема крепится к теплоотводу пайкой теплопроводящего фланца или приклеивается корпусом и фланцем с помощью теплопроводного клея.

Применение микросхем этих серий обеспечивает повышенную стабильность выходного напряжения (до 1%), низкие коэффициенты нестабильности по току и напряжению (менее 10 мВ), более высокий КПД, чем у обычных 78LХХ, что позволяет снизить входные напряжения питания. Это особенно актуально при питании от батарей.

Если требуется более мощный стабилизатор, который выдаёт ток 2-3 А, то типовую схему нужно изменить, добавив в нее транзистор VT1 и резистор R1.

Стабилизатор на микросхеме AMS1117 с транзистором

Транзистор серии КТ818 в металлическом корпусе рассеивает до 3 Вт. Если требуется большая мощность, то транзистор следует установить на теплоотвод. С таким включением максимальный ток нагрузки может быть для КТ818БМ до 12 А. Автор проекта - Igoran.

Обсудить статью МИНИАТЮРНЫЕ СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ

Основой стабилизатора напряжения (см. рис.1)является микросхема К157ХП2. Прекрасный и не справедливо забытый стабилизатор, с дополнительным транзистором, например КТ972А, может работать с током до 4А.

В данной схеме выходное напряжение стабилизатора равно 3В. Стабилизатор предназначен для питания низковольтной радиоаппаратуры. Вообще, при указанных на схеме номиналах резисторов, выходное напряжение можно устанавливать от 1,3 до 6В. При больших токах нагрузки транзистор должен быть установлен на соответствующий радиатор. Входное напряжение, подаваемое на стабилизатор, должно быть не менее семи вольт, хотя практически оно может быть вплоть до сорока. Такой стабилизатор хорошо работает от автомобильного аккумулятора. Главное, чтобы выделяющаяся мощность на транзисторе не превышала максимально допустимую 8Вт. Выключателем SB1 можно коммутировать выходное напряжение. При больших токах нагрузки это очень удобно — возможно применение маломощных тумблеров.

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

Для моделирования устройств, приобрел макетную плату. В комплект поставки дополнительно входила плата стабилизатора напряжения на пять и три с половиной вольта.

Размеры платы и расположение контактных штырьков соответствовали масштабу расположения контактов самой макетной платы. Смотрим фото один.

Схема стабилизатора показана на рисунке один.

Увеличенный вид платы стабилизатора показан на фото 2.

Питание на плату подается через универсальный разъем ХР1 и кнопочный выключатель SA1. Для защиты от переполюсовки подключения в схему введен защитный диод VD1, а для индикации включения напряжения питания — светодиод HL1 с гасящим резистором R1. Конденсаторы С1,С2,С3 и С4 — конденсаторы фильтра. С выключателя SA1 напряжение подается на стабилизатор AMS1117 5,0, выходное напряжение которого равно пяти вольтам. Далее это напряжение подается на разъемы XP2,XP3,XP5, XP6 и второй микросхемный стабилизатор AMS1117 3,3, выходной напряжение которого, равно 3,3 вольта. Напряжение на выходных разъемах ХР4 и ХР7 можно коммутировать с помощью прилагаемых к плате перемычек, смотрим фото 2. При работе с данной платой, вместо этих перемычек можно ввести в исследуемую схему измерители тока. При подключении вольтметров к контактам 1, 5 или 2, 6 разъема ХР2, можно контролировать напряжение питания плюс пять вольт. Напряжение +3,3 вольта можно контролировать, подключив вольтметр к контактам 3, 7 и 4, 8 этого же разъема. Разъем ХР5 является разъемом USB.

Отдельно стабилизаторы серии AMS1117 можно приобрести через интернет, я как всегда заказал их через eBay у наших друзей из Китая. Как видно из скриншота микросхемы дешевые, всего 68 рублей за десять штук. Микросхемы этой серии являются линейными стабилизаторами на фиксированные выходные напряжения — 1,2 В; 1,5 В; 1,8 В; 2,5 В; 2,85 В; 3,3 В и 5,0 вольт. Максимально допустимый ток нагрузки этих стабилизаторов равен одному амперу. Максимальное напряжение вход – выход 1,3 В. Максимальное входное напряжение равно +15 В. Минимальный ток нагрузки 0,01 А. Эти микросхемы способны работать в диапазоне температур от -40 до +125 градусов С. Все микросхемы данной серии имеют защиту от превышения тока нагрузки и защиту от превышения температуры кристалла. Данные стабилизаторы с дополнительными элементами способны работать и в схемах регулируемых блоках питания. Схема включения микросхемы AMS1117 1,2 в качестве регулируемого стабилизатора приведена на рисунке 2.

Для данной схемы выходное напряжение рассчитывается по формуле Uвых = Uстаб х (1 + R2/R1). Напряжение Uстаб для микросхемы AMS1117 1,2 равно 1,2 вольта. Минимальное напряжение такого стабилизатора снизу ограничено Uстаб, а сверху оно равно 15 В – 1,3 В = 13,7 В. Где 15 В, это максимальное входное напряжение, а 1,3 вольта – разница напряжений вход – выход стабилизатора. Все схемы с использованием данных микросхем должны иметь выходной танталовый конденсатор величиной 10 мкф. Это снижает нестабильность по току на высоких частотах. Возможно применение и оксидных электролитических конденсаторов величиной 50 мкф и более, желательно использовать высококачественный конденсатор с эквивалентным последовательным сопротивлением 0,5 Ом.
Используемая литература: «Микросхемы для линейных источников питания и их применение» Додэка 1998г.